L.A. Popa, Physics of the Dark Universe (2025) D24, 00862 arXiv: 6128737 [hep-ph]

Gravitational Waves (GWs) dynamics Beyond the Standard Model (BSM) of Particle Physics: Prospects for the future space-borne experiments

Lucia A. Popa

Outline:

- 1. Motivation
- 2. BSM to Cosmology
- 3. GWs background from inflation
- 4. Constraints and back reactions
- 5. Prospects for the future space-born GW experiments
- 6. Conclusions

GWs transport gravitational RADIATION generated by the relative motion of gravitating masses.

Primordial GWs produced during inflation

$$h^{2}\Omega_{GW}(f) = \frac{3}{128}\Omega_{rad}\mathcal{P}_{t}^{(s)}(f)\left[\frac{1}{2}\left(\frac{f_{eq}}{f}\right)^{2} + \frac{16}{9}\right],$$

 $N_{eff} = 3.046 - SM$

ΔN_{eff} - BSM

- -neutrino species, hierarchy
- -baryon/lepton asymmetry
- -recombination, nucleosynthesis

Popa, L.A., Tonoiu, D., JCAP 9, 066 (2015). Caramete, A., Popa, L.A., JCAP, 2, 012 (2014). Popa, L. A., Caramete, A., ApJ 723, 1 803 (2010).

 $f/Hz = 1.5 \times 10^{-15} k/Mpc^{-1}$.

Standard Model of Cosmology ACDM: six free parameters + Inflation + GR

LiteBIRD expectations:

- Perform a measurement at the limit of r < 0.001
- Test the scale dependence, gaussianity, and chirality imprinted on CMB B-mode polarization.
- Provide information on the underlying **REALISTIC** inflationary dynamics.

Issue: Energy scale separation between hidden and visible sectors

$$V_*^{1/4} = \left(\frac{3\pi^2 A_s^*}{2} r_*\right)^{1/4} M_{pl} < 1.6 \times 10^{16} \text{GeV} \quad (95\% \text{CL}) \,.$$
$$r_* = \frac{\mathcal{P}_h}{\mathcal{P}_{\zeta}}$$

Origins of the primordial GW background ?

- Quantum vacuum fluctuations: nearly scale invariant, nearly non-gaussian, parity conserving (non-chiral)
- Matter fields: energetically-excited extra particle content present during inflation (New Physics)

GW background from inflation imprinted in B-mode polarization of the CMB represents one of the main targets of ongoing experimental efforts.

Higgs-portal to inflation

 $\mathcal{O}_2 = H^{\dagger}H$ Higgs field is the single gauge and Lorentz invariant dimension–2 operator in SM

Higgs – portal: couple visible and "hidden" sectors at the renormalizable level

$$\begin{array}{lll} \Delta \mathcal{L} = c H H^{\dagger} S^2 & \langle S \rangle \neq 0 & \textit{inflaton} \\ & \langle S \rangle = 0 & DM \textit{ particle} \end{array}$$

Can be proved at the LHC by measuring production cross sections for the Higgs-like states

Atlas - $M_H = 125.36 \pm 0.41$ GeV

CMS - $M_H = 125.03 \pm 0.29$ GeV

M_{Top}= 172 GeV

Planck: 124 GeV < M_H < 127 GeV at 95% CL

Signal yield (σ/σ_{SM}(m_H=125.36 GeV)) ATLAS s = 7 TeV (Ldt = 4.5 fb⁻¹ TeV (Ldt = 20.3 fb) Best fit × % CL 2.5 1.5 0.5E 124 5 123 5 124 m_H[GeV] Popa, L.A., JCAP, 025 (2011). Popa, L. A., Caramete, A., ApJ 723, (2010).

Popa, L. A., Mandolesi, N., Caramete, A., Burigana, C., APJ 706 (2009).

Renormalization Group of the SM couplings:

Stabilization of EW vacuum

Vacuum fluctuations from Higgs-singlet inflation

Jordan frame action:

$$\begin{split} \mathcal{S}_{J} &= \int \mathrm{d}^{4}x \sqrt{-\hat{g}} \; [\underbrace{\frac{1}{2}(1+\xi_{h}h^{2}+\xi_{\phi}\phi^{2})\hat{\mathcal{R}}}_{\mathcal{L}_{grav}} - \underbrace{\frac{1}{2}(\partial_{\mu}h)^{2} - \frac{1}{2}(\partial_{\mu}\phi)^{2} + V(h,\phi)}_{\mathcal{L}_{infl}} \\ & \underbrace{-\frac{1}{2}(\partial\sigma)^{2} - U_{a}(\sigma) - \frac{1}{4}F^{a}_{\mu\nu}F^{a\mu\nu} + \frac{\lambda\sigma}{4f}F^{a}_{\mu\nu}\tilde{F}^{a\mu\nu}}_{\mathcal{L}_{spec}}]_{\mathcal{L}_{spec}} \end{split}$$

Z₂ - symmetric BSM inflation potential:

$$V(h,\phi) = \frac{1}{4}\lambda_h h^4 + \frac{1}{4}\lambda_{h\phi} h^2 \phi^2 + \frac{1}{4}\lambda_{\phi} \phi^4 + \frac{1}{2}m_h^2 h^2 + \frac{1}{2}m_{\phi}^2 \phi^2$$

Conformal transformation:

$$g_{\mu
u} = \Omega^2 \hat{g}_{\mu
u} \qquad \Omega = 1 + \xi_h^2 + \xi_\phi \phi^2$$

 $\xi_h h^2 + \xi_\phi \phi^2 \gg 1$

Higgs-singlet inflation: quantum vacuum fluctuations

VeV:

Mass eigenstates:

Higgs-singlet mixing angle:

$$v^{2} = 2 \frac{\lambda_{hs}m_{s}^{2} - 2\lambda_{s}m_{h}^{2}}{4\lambda_{s}\lambda_{h} - \lambda_{hs}^{2}},$$
$$u^{2} = 2 \frac{\lambda_{hs}m_{h}^{2} - 2\lambda_{h}m_{s}^{2}}{4\lambda_{s}\lambda_{h} - \lambda_{hs}^{2}}.$$

$$m_{1,2}^{2} = \lambda_{h}v^{2} + \lambda_{s}u^{2} \mp \sqrt{(\lambda_{s}u^{2} - \lambda_{h}v^{2})^{2} + \lambda_{hs}^{2}u^{2}v^{2}}$$

$$\tan 2\theta = \frac{\lambda_{hs} uv}{\lambda_h v^2 - \lambda_s u^2} \,.$$

MoEDAL/MAPP-1 & FASER-2 reach for Higgs-singlet inflaton

L.A. Popa, Universe (2022) 9, 235 L.A. Popa, Universe (**2021**) 7, 309

Transiently rolling spectator :

 $\xi_h h^2 + \xi_\phi \phi^2 \gg 1$

 $g_{\mu
u} = \Omega^2 \hat{g}_{\mu
u} \qquad \Omega = 1 + \xi_h^2 + \xi_\phi \phi^2$

$$\frac{\mathcal{L}_{spec}}{\sqrt{-g}} = \frac{1}{2} (\partial \hat{\sigma})^2 + \hat{U}_a(\hat{\sigma}) + \frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} - \mathcal{L}_{int}$$

U(1) axion field:
$$\hat{\sigma}$$
 $\hat{U}_a(\hat{\sigma}) = \frac{\Lambda^4}{\Omega^2} \left[1 - \cos\left(\frac{\hat{\sigma}}{\hat{f}}\right) \right]$ where $\left(\frac{\partial\hat{\sigma}}{\partial\sigma}\right)^2 \simeq \frac{1}{\Omega}$

$$\xi_*(\hat{\sigma}_*) \simeq m_* + m_*^{-1} \longrightarrow k_*$$

scale that exits horizon when axion velocity and SU(2) gauge field mass are maximal

Scale dependence

Enhanced B-mode polarization power spectrum

Issue: Gauge field evolution with backreactions

$$\mathcal{P}_t^{(s)}(k) = \frac{\epsilon_{Q_B} H^2}{\pi^2} \mathcal{F}^2(m_Q), \quad m_Q(t) \equiv \frac{gQ(t)}{H}$$

Primordial GWs energy spectrum for LiteBIRD observing strategy

Conclusions

Goal: perform a measurement at the limit of r < 0.001 and testing the scale dependence, gaussianity, and chirality imprinted on CMB B-mode polarization

Higgs portal assisted inflation

- Perturbativity constraints:
- Vacuum stability constraints:

$$\Lambda_U \simeq rac{M_{pl}}{\sqrt{\xi}}$$
 $\Delta V = rac{1}{4} \lambda_{h\phi} h^2 \phi^2$

• Background and perturbation evolution for other BSM fields: H_{infl}

B-mode satellite mission with access to large and intermediate CMB scales (e.g. LiteBIRD) and LHC experiments (e.g. ATLAS and CMS) would help in distinguishing source of GW primordial GW.

Science requirements making mechanism

Channel (GHz)	$\theta_{\rm FWHM}$ (amin)	$\sigma_{ m P}(u) \left[\mu { m K} { m amin} ight]$
40.0	69.0	36.8
50.0	56.0	23.6
60.0	48.0	19.5
68.0	43.0	15.9
78.0	39.0	13.3
89.0	35.0	11.5
100.0	29.0	9.0
119.0	25.0	7.5
140.0	23.0	5.8
166.0	21.0	6.3
195.0	20.0	5.7
235.0	19.0	7.5
280.0	24.0	13.0
337.0	20.0	19.1
402.0	17.0	36.9

LiteBIRD experimental configuration

LiteBIRD experimental sensitivity

$$N_{\ell}^{BB} = \left[\sum_{i} \frac{1}{n_{\ell}(\nu_i) + [C_{\ell}^{\mathrm{S}}(\nu_i) + C_{\ell}^{\mathrm{D}}(\nu_i)]\sigma_{\mathrm{RF}} + n_{\ell}^{\mathrm{RF}}(\nu_i)}\right]^{-1},$$

LiteBIRD Col. White Paper, Prog. Theor. Exp. Phys. (2023).