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GWs transport gravitational RADIATION generated by the relative motion of gravitating masses. 

Primordial GWs produced during inflation

LiteBIRD
Lite (Light) satellite for the study of 
B-mode polarization and Inflation 
from cosmic background Radiation 
Detection

LISA – Laser Interferometer Space Antenna
DECIGO - Deci-Hertz Interferometer GW Observatory
BBO - Big-Bang Observer (BBO)
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Figure 5: Left: The best fit of sourced GW power spectra P(s)
t for mA

∗ (blue line) and mB
∗ (red line) solutions. The best fit parameters of P(s)

t are also
indicated. Right: The corresponding best fit B-mode polarization power spectra for mA

∗ (blue line) and mB
∗ (red line) solutions. For comparison,

the B-mode polarization power spectra of ΛCDM target model (black line) and Higgs-singlet inflation model (green line) are presented.The noise
power spectrum NBB

l
(black dashed line) corresponding to the LiteBird mission experimental configuration [72] is also shown. .

power spectra from Eq. (38) for the stable solutions mA
∗ and mB

∗ , in the parameter intervals indicated in Eqs.(21) and
(47). Our goal is to infer the axion-gauge field model parameter space for both solutions and to evaluate their impact
on the CMB B-mode polarization power spectra.

To address the detectability of the GW sourced by the gauge field in presence of Higgs portal interactions we
take as target model the Planck best fit ΛCDM model [8] with the vacuum tensor-to-scalar ratio r(v) = 0.05 at
k0 = 0.05Mpc−1 and the normalisation Pobs

ζ = 2.1 × 109. We also take the noise power spectrum for the experimental
configuration of the LiteBird mission given in Ref. [72].
As the sourced tensor modes are expected to exceed the vacuum contribution at large CMB observable scales, we
take in this analysis the B-modes polarization power spectra in the multipole interval l $ (2 ÷ 150) and evaluate the
GW sourced tensor-to-scalar ratio at kp = 5 × 10−3. As before, we use the Monte-Carlo Markov Chains (MCMC)
technique to sample from the space of axion-gauge field and Higgs portal parameters and generate estimates of their
posterior distributions. As mentioned, we assume a flat universe and uniform priors for all parameters adopted in the
analysis.
Left panel from Figure 5 presents the best fit sourced GW power spectra for mA

∗ and mB
∗ solutions, while right panel

from the same figure shows the corresponding B-mode polarization power spectra. For comparison, the B-mode
polarization power spectra of ΛCDM target model and Higgs-singlet inflation model are also presented.

The spectrum of the sourced GW energy density at the present time and at a given frequency f = k/2π can be
approximated as [63]:
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where h2 is defined such that H0 = 100h km s−1 Mpc−1 is the Hubble parameter at the present time, P(s)
t ( f ) is power

spectrum of the sourced tensor modes, Ωrad = (1 − fν)
−1Ωγ is the present radiation energy density parameter, (1 −

fν)
−1 = 1.68 for the SM expectation value of Ne f f = 3.046 relativistic degrees of freedom [64], Ωγ = 2.38 × 10−5h−2

is the present photon energy density parameter and feq = 1.09 × 10−17 Hz is the frequency entering the horizon at
matter-radiation equality. We use f /Hz = 1.5 × 10−15k/Mpc−1 .
Left panel from Figure 6 presents the evolution with frequency of the energy density parameter h2ΩGW ( f ) of the
sourced primordial GW for mA

∗ and mB
∗ best fit solutions obtained for the LiteBird observing strategy. The solid green

line shows the vacuum energy contribution of Higgs-singlet model. In all cases the GW energy density spectrum at
present time is adiabatic with a slope that change at frequency scales that make the transition between matter and
radiation domination eras.
For comparison we also show h2ΩGW ( f ) sourced by axion-SU(2) gauge field model AX2 from Ref. [69]. For all cases
the GW energy spectra are adiabatic with a slope that change at frequency scales corresponding to modes entering the
horizon during the matter-radiation equality.
In the right panel from Figure 6 we show the same h2ΩGW ( f ) power spectra along with the sensitivity curves of the
future satellite-borne GW interferometers LISA [65], DECIGO [66] and BBO [67]. As h2ΩGW ( f ) power spectra
covers 55 e-folds before the end of inflation, to provide a comparison with the sensitivity of LISA, DECIGO and
BBO, we rescale the GW frequency to 15 e-folds before the end of inflation [61].
The sensitivity curves of the GW interferometers are obtained by using the ‘strain noise power spectra” file available
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Figure 5: Left: The best fit of sourced GW power spectra P(s)
t for mA

∗ (blue line) and mB
∗ (red line) solutions. The best fit parameters of P(s)

t are also
indicated. Right: The corresponding best fit B-mode polarization power spectra for mA

∗ (blue line) and mB
∗ (red line) solutions. For comparison,

the B-mode polarization power spectra of ΛCDM target model (black line) and Higgs-singlet inflation model (green line) are presented.The noise
power spectrum NBB

l
(black dashed line) corresponding to the LiteBird mission experimental configuration [72] is also shown. .
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take as target model the Planck best fit ΛCDM model [8] with the vacuum tensor-to-scalar ratio r(v) = 0.05 at
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ζ = 2.1 × 109. We also take the noise power spectrum for the experimental
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As the sourced tensor modes are expected to exceed the vacuum contribution at large CMB observable scales, we
take in this analysis the B-modes polarization power spectra in the multipole interval l $ (2 ÷ 150) and evaluate the
GW sourced tensor-to-scalar ratio at kp = 5 × 10−3. As before, we use the Monte-Carlo Markov Chains (MCMC)
technique to sample from the space of axion-gauge field and Higgs portal parameters and generate estimates of their
posterior distributions. As mentioned, we assume a flat universe and uniform priors for all parameters adopted in the
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line shows the vacuum energy contribution of Higgs-singlet model. In all cases the GW energy density spectrum at
present time is adiabatic with a slope that change at frequency scales that make the transition between matter and
radiation domination eras.
For comparison we also show h2ΩGW ( f ) sourced by axion-SU(2) gauge field model AX2 from Ref. [69]. For all cases
the GW energy spectra are adiabatic with a slope that change at frequency scales corresponding to modes entering the
horizon during the matter-radiation equality.
In the right panel from Figure 6 we show the same h2ΩGW ( f ) power spectra along with the sensitivity curves of the
future satellite-borne GW interferometers LISA [65], DECIGO [66] and BBO [67]. As h2ΩGW ( f ) power spectra
covers 55 e-folds before the end of inflation, to provide a comparison with the sensitivity of LISA, DECIGO and
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LiteBIRD expectations:

• Perform  a measurement at the limit of r < 0.001 
• Test the scale dependence, gaussianity, and chirality imprinted on CMB B-mode polarization.
• Provide information on the underlying REALISTIC inflationary dynamics.



SU(2) X SU(1)  EWSB

Planck scale

GW background from inflation imprinted in B-mode polarization of the CMB represents one of the 
main targets of ongoing experimental efforts. 

Origins of the primordial GW background ?

• Quantum vacuum fluctuations: nearly scale 
invariant, nearly non-gaussian, parity conserving (non-
chiral)

• Matter fields: energetically-excited extra particle 
content present during inflation (New Physics)

Issue: Energy scale separation between  hidden and visible sectors



Higgs-portal to inflation

Higgs field is the single gauge and Lorentz invariant 
dimension–2 operator in SM

Higgs – portal: 

inflaton

DM particle

couple visible and “hidden” sectors at the renormalizable level

Can be proved  at the LHC by measuring production cross sections for the Higgs–like states

interactions with fields beyond the SM. These can belong to the “hidden sector” in the sense
that they have no SM quantum numbers and thus escape detection. Such fields can, however,
have an important cosmological role: they can drive inflation or constitute dark matter.

In fact, on general grounds, one expects couplings between the Higgs field H and the hidden
sector scalars in quantum field theory (QFT). One of the special features of the Higgs field in
the Standard Model is that

O2 = H†H (2)

is the only Lorentz and gauge invariant operator of dimension 2. Therefore, given a scalar �, the
coupling H†H�2 or H†H�†�, if the scalar transforms under some symmetry, is renormalizable
and consistent with all the symmetries. As such, it must be included in the Lagrangian, although
not much can be said of the coupling strength. In much of the present review, we will consider
the simplest possibility that the scalar � is real and has no quantum numbers. In this case, the
allowed renormalizable terms are

V�h =
1

2
��hH

†H �2 + ��hH
†H � . (3)

� can play the role of an inflaton, in which case this interaction has important implications
for inflation, reheating and vacuum stability. If the system is endowed with a Z2 symmetry,
� ! ��, the trilinear term is forbidden and the scalar becomes a viable dark matter candidate.
Depending on the coupling, it can be a traditional weakly interacting massive particle (WIMP)
or constitute feebly interacting dark matter. We will also consider the possibility that � is a
multiplet transforming under some hidden sector symmetry and plays the role of a messenger
between the observable and dark sectors.

The Higgs coupling to the hidden sector scalar was first considered by Silveira and Zee in
the context of dark matter in Ref. [7], and as an auxiliary tool in Ref. [8]. Such a coupling can
also induce a Higgs–singlet mixing leading to specific signatures at the Large Hadron Collider
(LHC) [9]. Renewed interest in this framework was triggered by Patt and Wilczek’s paper [10],
where the phrase “Higgs portal” was coined. The common definition of the Higgs portal, also
adopted in this review, is the coupling of the Higgs bilinear O2 to fields neutral under the SM
symmetries, a prime example of which is given by Eq. 3.

In what follows, we review, at times complicated, physics of simple Higgs portal couplings,
focussing on their cosmological implications.

2 Generalities

In this review, we focus on renormalizable interactions between the Higgs field and the hidden
sector. On general grounds, these are expected to be present in QFT. In addition, we take
into account non–minimal scalar couplings to gravity [11]. Although these are e↵ectively higher
dimensional operators, the couplings are dimensionless and their presence can be motivated by
scale invariance of the theory at large field values [12]. Furthermore, their impact is important
in the Early Universe, when the space–time curvature is significant [13],[14],[15].

Consider the system of the Higgs field and a real scalar �. The scalar may, for example,
be an inflaton. The action that includes the most general renormalizable potential and lowest
order non–minimal couplings to gravity has the form [16]

LJ =
p
�ĝ

✓
�
1

2
⌦R̂ +

1

2
@µ�@

µ�+ (DµH)†DµH � V (�, H)

◆
. (4)

3



Planck: 124 GeV < MH < 127 GeV at 95% CL MTop= 172 GeV

Popa, L.A., JCAP, 025 (2011).
Popa, L. A., Caramete, A., ApJ 723, (2010).
Popa, L. A., Mandolesi, N., Caramete, A., Burigana, C., APJ 706 (2009).



Renormalization Group of the SM couplings: Stabilization of EW vacuum

where we denote Uφ(φ) ≡ ∂U(φ)/∂φ and Uφ,φ(φ) ≡ ∂Uφ(φ)/∂φ.
During inflation eφ " 1 and εφ , ηφ # 1. Inflation ends when εφ $ 1 corresponding to:

φend $

√

3

4
ln

4

3
(13)

The number of e-folds before the end of inflation can be obtained as:

N = −
∫ φend

φin

U(φ)

Uφ(φ)
dφ $

3

4
exp (2φin/

√
6) , (14)

leading to the value of the field at beginning of inflation:

φin $
√

6

2
ln

4N

3
. (15)

For N = 59 e-folds, as required by the Planck normalization [8], φin = 5.34Mpl, while the value of the inflaton
field φ∗ corresponding to the Hubble crossing of the largest observable CMB scale at N $ 55 e-folds before the end
of inflation [7] is φ∗ = 5.26Mpl.

The power spectra of curvature and tensor perturbations generated during inflation by the quantum vacuum fluc-
tuations are:

Pv
ζ(k) = As

(

k

k0

)ns−1

, As =
H2

24π2εφ
, (16)

Pv
t (k) = At

(

k

k0

)nt

, At =
2H2

π2
, (17)

where As and At are the scalar and tensor power spectra amplitudes, ns and nt the corresponding spectral indexes and
k0 is the pivot scale. The vacuum tensor-to-scalar ratio at k0 is defined as r(v)

k0
= P(v)

t /P
(v)
R .

To the first order in slow-roll approximation, ns, nt and rvac are:

ns $ 1 − 6εφ + 2ηφ , nt = −2εφ , rvac = 16εφ , (18)

leading to ns = 0.961 and r(v) = 3.44 × 10−3 for φ∗ = 5.26Mpl. The best fit of Planck measurements in the standard
ΛCDM cosmology indicates Pobs

ζ
= (2.1 ± 0.03)× 109 and ns = 0.9649± 0.0042 (65% CL) at k0 = 0.05Mpc−1 [7, 8]

while the joint analysis of BICEP2/KECK and Planck data constrained the vacuum tensor-to-scalar ratio r(v)
0.05
< 0.036

( 95% CL) [9].

2.1. Higgs portal assisted Higgs-singlet inflation

Higgs portal interaction term V(h, s) ⊂ λh,φh
2s2 from Eq. (3) has distinct contributions to both EW scale and to

the high energy scales, ensuring the the stability of the inflation potential.
In the limit λsw

2 " λhv2, the extremization of the scalar potential V(h, s) leads to the squared Higgs mass eigen-
value [34, 35]:

m2
h $ 2v2



λh −
λ2

hs

4λs



 , (19)

m2
s = 2λsw

2 + 2(λ2
hs/λs)v

2 and mixing angle tan 2θ = λhsvw/(λhv2 − λsw
2).

The Higgs vev is fixed at v ≡ (
√

2GF)1/2= 246.22 GeV by the Fermi constant GF while the measured SM Higgs
mass is mS M

h
= 125.10 GeV [37] leading to λS M

h
$ 0.128. As a result, Eq. (19) shows that the same value of mS M

h
can

be obtained for various values of λh as long as λh − λ2
hs
/ 4λs $ λS M

h
.

Consequently, at the EW scale the quartic couplings λi are all positive while the perturbativity constraint (λ2
i /4π < 1)

imposes λi < 1. Therefore, in the Higgs-singlet inflation the Higgs quartic coupling is given by:

λh

∣
∣
∣
∣
∣
Higgs+singlet

= λS M
h +

λ2
hs

4λs
. (20)

5

the intermediate field range, there is no organizing principle to control the quantum corrections.
Again, one concludes that a UV completion is needed for a consistent description of the entire
field range [52],[59],[60]. A discussion of related issues and their possible solutions can be found
in [61],[62],[63],[64].

In conclusion, the Higgs portal allows us to build viable inflationary models, where the role
of the inflaton is played by a combination of the Higgs and singlet fields. Such models fit the
PLANCK data and satisfy the tree level unitarity constraint as long as the e↵ective quartic
coupling is su�ciently small.

4 Vacuum stability and inflation

The issue of vacuum stability has become one of the central questions in Higgs physics in recent
years. The current data favor vacuum metastability, which entails a number of cosmological
puzzles. Even if our vacuum is very long lived, one should explain how the Universe ended up in
this energetically disfavored state in the first place. In what follows, we formulate the problems
and discuss their possible solutions within the Higgs portal framework.
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Figure 3: Vacuum stability in the Standard Model in terms of the top quark and Higgs masses.
The measured values are marked by a dot. The figure is from Ref. [70] © CC–BY.

4.1 Higgs potential in the Standard Model and quantum fluctuations

The value of the Higgs mass is intimately related to stability of the electroweak (EW) vacuum
in the Standard Model. If the Higgs is light, the corresponding quartic coupling is small and
driven negative at high energy by the top quark loop [65],[66],[67]. This implies that the potential
turns negative at large field values and the EW vacuum is not absolutely stable [68]. The current
Higgs and top quark masses mh ' 125 GeV, mt ' 173 GeV 7 favor its metastability (Fig. 3),

7The current LHC top quark mass measurements tend to give a slightly lower value than the world average,
i.e. close to 172.5 GeV, as reviewed in [69].
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√
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Vacuum fluctuations from Higgs-singlet inflation

Conformal transformation:

Jordan frame action:

Z2 - symmetric BSM inflation potential:



Higgs-singlet inflation: quantum vacuum fluctuations
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Figure 1: Left: The marginalised likelihood probability distributions obtained for Higgs-

singlet inflation model parameters. Right: Evolution of the Hubble expansion rate during

inflation Hinf with �hs for di↵erent values of �s. Here Hinf is evaluated at �⇤ = 5.26Mpl

corresponding to the Hubble crossing of the largest observable CMB scale at N ' 55

e-folds before the end of inflation [7].

for increasing values of �s. The figure shows that Hinf increases when the

tree-level threshold corrections to SM Higgs quartic coupling are decreased.

We show that a mixture of Higgs boson with a heavy scalar singlet with large

vev is a viable model of inflation that satisfy the Planck data constraints

avoiding at the same time the instability of the EW vacuum as log as the

Higgs portal interactions lead to a positive tree-level threshold corrections

for SM Higgs quartic coupling. Moreover, these corrections lead to changes

of the Hubble expansion during inlation that impact on the evolution of the

axion-gauge field spectator sector.

We evaluate the scalar-singlet mass ms and mixing angle | sin(✓)| for �s

and �hs in the confidence intervals given in Eq. (21). The best fit vales

(�s,�hs) = (0.1, 0.05) lead to ms = 289.42 GeV and | sin(✓)| = 0.122.

One should note that for ms ' 290 GeV the maximal allowed mixing angle is

| sin(✓)|max = 0.31 and the maximal and minimal allowed branching ratios are

15

6hs

0 0.02 0.04

H
in

f  #
 1

06  M
pl

6

6.2

6.4

6.6

6.8

7

7.2
6s=0.1

6
s =0.05

6
s =0.01

Figure 1: Left: The marginalised likelihood probability distributions obtained for Higgs-

singlet inflation model parameters. Right: Evolution of the Hubble expansion rate during

inflation Hinf with �hs for di↵erent values of �s. Here Hinf is evaluated at �⇤ = 5.26Mpl

corresponding to the Hubble crossing of the largest observable CMB scale at N ' 55

e-folds before the end of inflation [7].

for increasing values of �s. The figure shows that Hinf increases when the

tree-level threshold corrections to SM Higgs quartic coupling are decreased.

We show that a mixture of Higgs boson with a heavy scalar singlet with large

vev is a viable model of inflation that satisfy the Planck data constraints

avoiding at the same time the instability of the EW vacuum as log as the

Higgs portal interactions lead to a positive tree-level threshold corrections

for SM Higgs quartic coupling. Moreover, these corrections lead to changes

of the Hubble expansion during inlation that impact on the evolution of the

axion-gauge field spectator sector.

We evaluate the scalar-singlet mass ms and mixing angle | sin(✓)| for �s

and �hs in the confidence intervals given in Eq. (21). The best fit vales

(�s,�hs) = (0.1, 0.05) lead to ms = 289.42 GeV and | sin(✓)| = 0.122.

One should note that for ms ' 290 GeV the maximal allowed mixing angle is

| sin(✓)|max = 0.31 and the maximal and minimal allowed branching ratios are

15

 log k [ Mpc-1]
-6 -4 -2 0

10
10

 P
ts (k

)

0.2

0.4

0.6

0.8

1

1.2

1.4  r*      m*      <    "N 

A:  0.039,  3.09,  3.06,  7.3 

B:  0.047,  3.21,  2.94,  7.1 

kp= 5#10-3 Mpc-1

Multipole 
101 102 103

l (
l+

1)
 C

BB l
 / 

2 
:

  [
7

 K
2 ]

10-6

10-5

10-4

10-3

10-2

10-1

Higgs-singlet: r(v)
0.05=3.44 # 10-3

N
BB

l$CDM: r(v)
0.05 = 0.05

A:  r*=0.039 

B:  r*=0.047   

kp=5#10-3 Mpc-1

Figure 5: Left: The best fit of sourced GW power spectra P
(s)
t for m

A
⇤ (blue line) and

m
B
⇤ (red line) solutions. The best fit parameters of P(s)

t are also indicated. Right: The

corresponding best fit B-mode polarization power spectra for m
A
⇤ (blue line) and m

B
⇤

(red line) solutions. For comparison, the B-mode polarization power spectra of ⇤CDM

target model (black line) and Higgs-singlet inflation model (green line) are presented.The

noise power spectrum N
BB
l (black dashed line) corresponding to the LiteBird mission

experimental configuration [72] is also shown. .

at a given frequency f = k/2⇡ can be approximated as [63]:

h
2⌦GW (f) =

3

128
⌦radP

(s)
t (f)

"
1

2

✓
feq

f

◆2

+
16

9

#
, (48)

where h
2 is defined such that H0 = 100h km s�1 Mpc�1 is the Hubble pa-

rameter at the present time, P (s)
t (f) is power spectrum of the sourced tensor

modes, ⌦rad = (1�f⌫)�1⌦� is the present radiation energy density parameter,

(1 � f⌫)�1 = 1.68 for the SM expectation value of Neff = 3.046 relativistic

degrees of freedom [64], ⌦� = 2.38 ⇥ 10�5
h
�2 is the present photon energy

density parameter and feq = 1.09 ⇥ 10�17 Hz is the frequency entering the

horizon at matter-radiation equality. We use f/Hz = 1.5⇥ 10�15
k/Mpc

�1 .

Left panel from Figure 6 presents the evolution with frequency of the energy

density parameter h2⌦GW (f) of the sourced primordial GW for mA

⇤ and m
B

⇤

best fit solutions obtained for the LiteBird observing strategy. The solid

green line shows the vacuum energy contribution of Higgs-singlet model. In

all cases the GW energy density spectrum at present time is adiabatic with
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〈h〉 = v, 〈s〉 = u, extremization of the low energy scalar potential (2) requires

v2 = 2
λhsm2

s − 2λsm2
h

4λsλh − λ2
hs

,

u2 = 2
λhsm2

h − 2λhm2
s

4λsλh − λ2
hs

. (3)

The diagonal matrix elements of the Hessian at this point are 2λsu2 and 2λhv2, while its deter-

minant is (4λsλh − λ2
hs)v

2u2. Then, the extremum is a local minimum if

λhsm
2
h − 2λhm

2
s > 0 ,

λhsm
2
s − 2λsm

2
h > 0 ,

4λsλh − λ2
hs > 0 . (4)

In this case, the mass squared eigenvalues are

m2
1,2 = λhv

2 + λsu
2 ∓

√

(λsu2 − λhv2)2 + λ2
hsu

2v2 (5)

with the mixing angle θ given by

tan 2θ =
λhsuv

λhv2 − λsu2
. (6)

Following the convention of [16], the mixing angle is defined by

OT M2 O = diag(m2
1,m

2
2) , O =

(

cos θ sin θ
− sin θ cos θ

)

, (7)

where M2 is a 2×2 mass squared matrix. The range of θ is related to the ordering of the

eigenvalues through sign(m2
1 −m2

2) = sign(λsu2 − λhv2) sign(cos 2θ) and we take m1 to be the

smaller eigenvalue. The mass eigenstates are

H1 = s cos θ − h sin θ ,

H2 = s sin θ + h cos θ . (8)

Note that the lighter mass eigenstate H1 is “Higgs–like” for λsu2 > λhv2 and “singlet–like”

otherwise. The former case corresponds to |θ| > π/4.

2.2 Large singlet VEV limit

In the limit u & v, we have

m2
1 ' 2

(

λh −
λ2
hs

4λs

)

v2 ,

m2
2 ' 2λsu

2 +
λ2
hs

2λs
v2 ,

tan 2θ ' −
λhsv

λsu
, (9)
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Figure 2: Maximal allowed values for | sin(✓)| in the scalar-singlet high mass region

ms 2 [125 � 600] GeV from the direct LHC Higgs searchers [36] (blue) compared with

ms and | sin(✓)| values obtained in Higgs-scalar singlet model for �s=0.1 (red) and �s=0.2

(green) when �hs is allowed to vary in the confidence interval given in Eq. (21). Some

particular values (�s,�hs) are also indicated. The figure shows that the Higgs-singlet mix-

ing can lead to a significant tree-level modification of the Higgs quartic coupling which

can be measured at colliders [27, 28].

BR
H!hh

max
= 0.4 and BR

H!hh

min
= 0.18 at 95% CL [37] while the upper bound

of the invisible Higgs boson branching ratio is BR
H!hh

inv
< 0.11 at 95% CL

[40]. Figure 2 presents ms - | sin(✓)| dependences obtained in Higgs-scalar

singlet model for �s=0.1 and �s=0.2 when �hs is allowed to vary, compared

with the maximal allowed values for | sin(✓)| in the scalar-singlet high mass

region ms 2 [125 � 600] GeV from direct LHC Higgs searchers [36]. The

figure clearly shows that the Higgs-singlet mixing can lead to a significant

tree-level modification of the Higgs quartic coupling which can be measured

at colliders [27, 28].
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Figure 10: Parameter space for low scale inflation, which reheats the universe through a Higgs portal
coupling. Constraints from meson decay and collider searches are indicated with thick dashed lines.
Indirect constraints from the muon’s lifetime along with W,Z-boson masses (�r) is indicated with
a thin orange line, and the indirect constraint from the Higgs boson’s decay width measured at the
LHC is indicated with a thin gray line. The long-dashed blue line excludes parameter space where
the Higgs-inflaton coupling (��h) spoils the flatness of the inflaton’s potential during inflation.
The dotted pink lines show parameter space where � decays promptly at the end of inflation
for ⇤ = 1019 GeV and �� = 10�13, where � decays when the energy density of the universe is
⇠ (100 GeV)4, and excludes where � decays after before big bang nucleosynthesis. On top of the
plot, the correspondence between the energy scale during inflation and the quartic inflaton mass
is indicated. The range of inflationary energy scales is derived from relations shown in Figure 2;
these ranges hold for a generic quartic inflaton, irrespective of the possible addition of a curvaton.
With a curvaton model specified, the scale of inflation is more tightly predicted, see Table 1.

constraint on the size of the Higgs-inflaton mixing angle ✓� is shown in terms of m�, with a long-
dashed blue line. It is interesting that, plotted in the (sin ✓�,m�) plane, the line ��h = 4⇡

p
�� is

independent of the size of the quartic self-coupling, ��. This is because making the replacement
��h ! 4⇡

p
�� in the Higgs portal mixing angle, results in a mixing angle proportional to m�,

tan (2✓�) /
p
��v� ⇠ m�.
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generated during inflation and to render the sourced GW produced by the

gauge-fields viable we will consider a model that can lead to localized gauge

field production where the spectator axion transiently rolls on potential of

the form [55, 56, 57]:

V (�) = µ
4


1 + cos

✓
�

f

◆�
, (24)

where µ is its modulation amplitude with mass dimension. The axion field

rolls between �min=0 and �max = ⇡f with a velocity that obtains the maxi-

mum value at t⇤ when �⇤ = 0.5⇡f and the slope of the axion potential V�(�⇤)

is maximal. Here V� ⌘ @�V/@�.

We assume an initial gauge field configuration described by [51, 58, 59]:

A
a

0 = 0 , A
a

i
= �

a

i
a(t)Q(t) , (25)

where a(t) is the scale factor and Q(t) is the SU(2) gauge field. This configu-

ration leads to an isotropic and spatially homogeneous cosmological solution

where isotropy is protected by the non-Abelian gauge field invariance [17].

The time-dependent components of the axion-gauge field model X =

(�, Q, f) translate from Jordan to Einstein frame under the conformal trans-

formation given by Eq.(2) as @X/@X̂ = ⌦�1/2 where X̂ denote the Jordan

frame counterpart [60].

In the large-field approximation given by Eq (4) this leads to ⌦�1/2
'

exp
�
�2�⇤/

p
6
�
' 1.36⇥ 10�2, leaving the evolution equations of the axion-

gauge field spectator unchanged.

The evolution equations of the Hubble parameter reads as:

3H2 =
1

2
�̇
2 + V (�) +

1

2
�̇
2 + U(�) +

3

2

h
(Q̇+HQ)2 + g

2
Q

4
i
, (26)
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and the equations of motion for inflaton, axion, and gauge fields without

beackreaction are given by [54, 61, 62]:

�̈+ 3H�̇+ U�(�) = 0 , (27)

�̈+ 3H�̇+ V�(�) = �
3g�

f
Q

2(Q̇+HQ) , (28)

Q̈+ 3HQ̇+ (Ḣ + 2H2)Q+ 2g2Q3 = g
�

f
�̇Q

2
. (29)

The Hubble slow-roll parameter ✏H contains contributions from inflaton, ax-

ion and gauge fields:

✏H = ✏� + ✏� + ✏QE + ✏QB , (30)

where the corresponding slow-roll parameters:

✏� =
�̇
2

2H2
, ✏� =

�̇
2

2H2
, ✏QE =

(Q̇+HQ)2

H2
, ✏QB =

g
2
Q

4

H2
, (31)

are assumed to be smaller than unity during inflation. These parameters

modify ✏H in Eq. (30), that in turn a↵ects the spectral index of scalar

perturbations [54, 70, 71]:

ns � 1 = 2(⌘� � 3✏� � ✏QB � ✏QE � ✏�) ' 2(⌘� � 3✏� � ✏QB) . (32)

Here ⌘� = U�,�/3H2 and we assume that ✏QB � ✏QE , ✏�. One can keep track

on the evolution of ✏H by requesting that ✏� is the dominant in (30). How-

ever, it is shown that this condition restricts significantly the allowed range

for ✏QB [71]. Instead, Ref. [71] requested ✏QB < 0.2 given the fact that the

central value for ns measured by Planck [8] is 1� ns ' 0.04.

19

When studying the dynamics of the gauge field, it is convenient to use

the time-dependent mass parameter of the gauge field fluctuations mQ(t) and

the e↵ective coupling strength ⇣(t) defined as [54, 62]:

mQ(t) ⌘
gQ(t)

H
, ⇣(t) ⌘ �

��̇(t)

2Hf
, (33)

that in the slow-roll approximation (Ḣ ⌧ H
2, �̈ ⌧ H�̇, Q̈ ⌧ HQ̇) leads to:

r
✏QE

✏QB

' m
�1
Q

, ⇣(t) ' mQ(t) +m
�1
Q
(t) . (34)

The gauge field fluctuations around the configuration given by Eq. (25)

gives scalar, vector and tensor perturbations [58, 59]. In particular, the

tensor perturbations of the gauge field are amplified near the horizon crossing,

leading to chiral GW background with left- or right-hand sourced tensor

modes [52, 54, 72, 73]. Assuming that only left-hand modes are produced,

Ref. [54] shown that the power spectrum of the sourced GW tensor modes

in the super-horizon limit reads:

P
(s)
t (k) =

✏QBH
2

⇡2
F

2(mQ) , (35)

where F(mQ) is a monotonically increasing function of mQ that, using the

slow-roll equations (34), can be approximated by:

F(mQ) ' exp [2.4308mQ � 0.0218m2
Q
� 0.0064m3

Q
� 0.86] for 3  mQ  7.

The tensor-to scalar ratio r
(s)
kp

of the sourced tensor modes at the peak scale

kp is then:

r
(s)
kp

=
P

(s)
t

P
(v)
⇣

(kp) =
✏QBH

2

⇡2P
(v)
⇣

F
2(mQ) , (36)

where P
(v)
⇣

(kp) is the power spectrum of vacuum curvature fluctuations. As

P
(v)
⇣

receives negligible sourced contributions for mQ �
p
2 [74, 54, 70] it can
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Issue: Gauge field evolution with backreactions
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Figure 6: Left: Evolution with frequency of the energy density parameter h2⌦GW (f) of the

sourced primordial GW for mA
⇤ (blue line) and m

B
⇤ (red line) best fit solutions obtained for

the LiteBird observing strategy. The solid green line shows the vacuum energy contribution

of Higgs-singlet model. In all cases the GW energy density spectra at present time are

adiabatic with a slope that change at frequency scales that make the transition between

matter and radiation domination eras. For comparison we also show h
2⌦GW (f) sourced

by axion-SU(2) gauge field model AX2 from Ref. [69]. Right: The h
2⌦GW (f) power

spectra presented in the left panel, rescaled at GW frequencies corresponding to 15 e-

folds before the end of inflation, and the sensitivity curves for LISA, DECIGO, and BBO

interferometers.
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Primordial GWs energy spectrum for LiteBIRD observing strategy
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Conclusions 
Goal: perform  a measurement at the limit of r < 0.001 and testing the scale dependence, gaussianity, and 
chirality imprinted on CMB B-mode polarization

Higgs portal assisted inflation 

• Perturbativity constraints:

• Vacuum stability constraints:

• Background and perturbation evolution for other BSM fields:

B-mode satellite mission with access to large and intermediate CMB scales (e.g. LiteBIRD) and LHC 
experiments (e.g. ATLAS and CMS) would help in distinguishing source of GW primordial GW.
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Fig. 7: Flowchart indicating the sequence of steps leading to the determination of cosmo-

logical parameters from mission TOD via several intermediate products that can also be

scientifically exploited. Note the iterative nature of the processing.

Finally, we need an accurate description of the uncertainties in the products and their

correlations. The data volumes we need to amass in order to detect the tiny CMB signals

preclude exact analyses, and so we typically use Monte Carlo methods for debiasing and

forward propagation of uncertainties. We therefore need to be able to generate and reduce

large numbers of very accurate simulated data sets, whose input mission and sky models are

themselves informed by our analyses of the satellite data.
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Science requirements making mechanism

Improvements in foreground cleaning algorithms could
reduce the level of foreground contamination and perhaps
allow a larger sky fraction to be used in the analysis.
However, even with perfect control of these factors,
the cosmic variance limit of Fig. 4 cannot be beaten.
We conclude from this study that the most important factor
limiting the sensitivity of CMB observations to the chirality
of the GWB is the large cosmic variance of the TB and EB
spectra due to large scalar T and E signals, respectively.

C. Simultaneous detection and self-calibration

In order to achieve its baseline performance target,
LiteBIRD will require an uncertainty on the polarimeter
calibration angle of less than one arcminute [50,51]. There
are several methods that have been used in the past to
calibrate polarimeters such as polarized astrophysical
sources like the Crab Nebula (Tau A) or man-made sources
such as a polarization selective mesh. There are many

factors preventing such methods achieving calibrations
better than one degree. For example, Tau A is the best
candidate for a pointlike polarized source, but this provides
a calibration uncertainty of ∼0.5 degrees [52], and with
these, it is hard to achieve a calibration uncertainty better
than one degree [53]. The polarization of Tau A also has a
poorly understood frequency dependence and is ultimately
an extended source, making it poorly suited to a charac-
terization of the polarized beam [54]. Man-made sources,
on the other hand, must often be placed in the near field and
are unstable over long time frames. However, a recent
proposal of a balloon-borne artificial polarization source in
the far field of ground-based experiments may ameliorate
this problem for ground-based telescopes [54].
LiteBIRD plans to self-calibrate its polarimeter using the

EB spectrum, which is assumed to have zero contribution
from primordial perturbations [55]. Unfortunately, this
makes assumptions about cosmology and uses part of
the constraining power to calibrate the instrument, instead
of for science. Furthermore, residual foreground contribu-
tions to TB and EBmay result in a biasing of the calibration
angle. Reference [56] shows that a miscalibration angle of
0.5 degrees can result in a bias in the recovered value of r of
2 × 10−3, which is significant for LiteBIRD’s aim to push
constraints on r to r ∼ 10−3. However, Ref. [56] also finds
that TB and EB are consistent with zero in a study of the
low-foreground BICEP2 region. Furthermore, in a study of
the Planck data, Ref. [57] finds that TB and EB are both
consistent with zero for sky fractions up to fsky ¼ 0.3, and
that TB increases to significant levels only for larger sky
fractions, while EB is only marginally nonzero for
fsky ¼ 0.7. Therefore, while foregrounds must be consid-
ered, they do not necessarily limit the use of this approach
to calibration.
We want to study the detectability of primordial TB and

EB correlations when taking self-calibration into account.
The self-calibration process is carried out by zeroing the
miscalibration Δψ by measuring its contribution to the TB
and EB spectra. In this analysis, we will assume that residual
foreground contributions to TB and EB are negligible.
If the angle of the polarimeter is miscalibrated by some

angle Δψ , the measured Q and U will be rotated. We work
with the spin-2 quantities ðQ# iUÞðn̂Þ, which have the
transformation properties under rotation:

ðQ̃# iŨÞðn̂Þ ¼ e#i2ΔψðQ# iUÞðn̂Þ:

E and B can be computed to find

0

B@
ãTlm
ãElm
ãBlm

1

CA ¼

0

B@
1 0 0

0 cosð2ΔψÞ − sinð2ΔψÞ
0 sinð2ΔψÞ cosð2ΔψÞ

1

CA

0

B@
aTlm
aElm
aBlm

1

CA

which give the resulting rotations of the angular power
spectra:

FIG. 6. Signal-to-noise ratio of TBþ EB spectra assuming no
delensing and 2% foreground contamination and LiteBIRD
instrumental noise added using method described in Appendix C.
The dashed line refers to the observational constraint of
r& ¼ 0.07. LEFT PANEL kp ¼ 5 × 10−3 Mpc−1. RIGHT PANEL:
kp ¼ 7 × 10−5 Mpc−1.

TABLE I. Summary of the LiteBIRD specifications (fsky ¼ 0.5).

Channel (GHz) θFWHM (amin) σPðνÞ [μKamin]

40.0 69.0 36.8
50.0 56.0 23.6
60.0 48.0 19.5
68.0 43.0 15.9
78.0 39.0 13.3
89.0 35.0 11.5
100.0 29.0 9.0
119.0 25.0 7.5
140.0 23.0 5.8
166.0 21.0 6.3
195.0 20.0 5.7
235.0 19.0 7.5
280.0 24.0 13.0
337.0 20.0 19.1
402.0 17.0 36.9
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the case of ΔN ¼ 5, while the excellent agreement is seen
for ΔN ¼ 10.
Finally, we discuss how long it takes χ to get to χ", given

that the initial value of χ is negligibly small compared to
fπ/2. Assuming χðt ≈ 0Þ ≪ f and using Eq. (A5), one finds

Ht" ∼
π
2
ΔN: ðA9Þ

However, it is definitely underestimated because ̇χðt ≪ t"Þ
must be smaller than ̇χðt ¼ t"Þ, which is themaximumvalue.
In fact, a full numerical calculation shows that the coefficient
is somewhat larger,

Ht" ≈ 1.8ΔN: ðA10Þ

One may wonder if χðtÞ can stay on the top of its potential
hill for a longer time if its initial value is small enough.
However, since χ is coupled to the SUð2Þ gauge fields and
the system quickly goes to the attractor behavior, the time
scale of themotion of χ is almost solely determined byΔN.
It indicates that the peak scale kp should be smaller than
ki exp½1.8ΔN&. Here, ki is the wave number of the mode
exiting the horizon at the initial time, and it is smaller or
roughly equals the largest CMB scale. Therefore, we
obtain the following constraint on ΔN,

ΔN ≳ 1

1.8
ln
!

kp
kCMB

"
: ðA11Þ

APPENDIX B: CALCULATION OF THE
COVARIANCE MATRIX, ξ

For a given beam, bl, and a white noise level, w−1
X1X2

, the
expected variance of the multipoles of an observed sky is
given by

hðaX1

lmÞ"a
X2

l0m0 i ¼ ðjblj2C
X1X2

l þ w−1
X1X2

Þδll0δmm0 : ðB1Þ

An unbiased estimator of the angular power spectrum is
then

ĈX1X2

l ¼ jblj2
! Xl

m¼−l

ðaX1

lmÞ"a
X2

l0m0

2lþ 1
− w−1

X1X2

"
: ðB2Þ

By considering the expectation hðĈX1X2

l − CX1X2

l ÞðĈX3X4

l −
CX3X4

l Þi, it can then be shown that the covariance is given
by [25]

ξX1X2X3X4 ¼ 1

ð2lþ 1Þfsky
ðC̃X1X3

l C̃X2X4

l þ C̃X1X4

l C̃X2X3

l Þ:

ðB3Þ

where C̃X1X2

l ¼ CX1X2

l þ jblj−2w−1
X1X2

.

APPENDIX C: CMB NOISE SPECTRUM

For a given set of experimental parameters such as
channel frequencies, FWHM and sensitivity in polariza-
tion, and temperature per channel, we want to find the
aggregate noise in the CMB spectra. We follow the treat-
ment of Ref. [19], which itself closely follows Ref. [49].
There are multiple sources of noise in the final spectrum:

instrumental noise in the CMB channels, residual fore-
ground noise from incomplete cleaning, and additional
systematic noise introduced from the templates used in
cleaning the CMB channels.
The noise in the final CMB spectrum is

NBB
l ¼

#X
i

1

nlðνiÞ þ ½CS
lðνiÞ þ CD

l ðνiÞ&σRF þ nRFl ðνiÞ

$−1
;

ðC1Þ

where the index i runs over channels used in CMB analysis,
RF refers to residual foregrounds, nlðνÞ is the noise
spectrum in the channels used for CMB analysis, ½CS

lðνiÞþ
CD
l ðνiÞ&σRF is the residual foreground level in dust and

synchrotron rescaled to the frequencies used in CMB
analysis, and nRFl ðνiÞ is the instrumental uncertainty in
the process of foreground removal.
The simplest of the above terms is the noise in the CMB

channels:

nlðνÞ ¼ σ2PðνÞ exp
#
lðlþ 1Þð π

10800 θFWHMðνÞÞ2

8 lnð2Þ

$
;

FIG. 12. Comparison between the full numerical result of PSourced
h ðkÞ (blue solid line) and the template Eq. (2) with Eq. (A4) and

σ2 ¼ 0.15ΔN2 (red dashed line). In the left (right) panel, ΔN ¼ 5ð10Þ, m" ¼ 4, ϵB" ≈ 9 × 10−4, and the peak amplitude reaches the
tensor-to-scalar ratio, r" ¼ 0.05. The Hubble parameter is set as Hinf ¼ 8 × 1011 GeV, which corresponds to r ¼ 10−5 without the
sourced GW. In the case of ΔN ¼ 5, the derived formula slightly underestimates the peak amplitude and the width, while the fit is
excellent for ΔN ≳ 10.
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LiteBIRD experimental configuration

LiteBIRD experimental sensitivity

LiteBIRD Col. White Paper, Prog. Theor. Exp. Phys. (2023).


